Специфика некоторых товаров требует прогноза сбыта по каждому наименованию в целях определения сроков и объемов их завоза на склады для обеспечения готовности к сбыту в любой период года. С этой целью решаются задачи прогнозирования спроса по каждому наименованию при помощи математических методов. Проблемы долгосрочного прогнозирования для планирования производства подробно рассматриваются в специальной литературе. Текущее прогнозирование включает прогнозирование величины спроса в интервале между двумя поставками и оценку законов распределения спроса в этом интервале, причем информация о спросе и особенностях его распределения в интервале между поставками должна обновляться, так как без специальной корректировки оказывается недостаточной. Как показал опыт крупных поставщиков, математические методы прогнозирования спроса и расчета запасов в равной степени полезны и в оптовой, и в розничной торговле
Математический подход к прогнозированию покупательского спроса заключается в расчленении его на основные составляющие элементы, среди которых выделяются: развитие спроса как основная тенденция, сезонные колебания спроса и случайные его колебания, для чего используют инструмент математической статистики. Нередко на практике прогнозирование спроса осуществляют только на базе средних значений. Некоторые компании для упрощения расчетов нередко осуществляют краткосрочное прогнозирование на базе значений величин спроса, которые в лучшем случае являются средними и не учитывают элемента неопределенности. Прогнозирование выполняется в зависимости от потребностей, по методу экспоненциального выравнивания.
Такие прогнозы обычно бывают чрезмерно оптимистическими, не учитывают элемента неопределенности и приводят к значительным колебаниям величин запасов. Более реальным является такое прогнозирование, в котором наряду со средним значением (математическим ожиданием) определяется и оценивается возможная ошибка. В связи с этим решаются задачи улучшения прогнозов и стратегии управления запасами с учетом ошибок прогнозирования спроса.
Компания "Renault", например, при подготовке краткосрочных прогнозов спроса определяет текущий запас необходимых деталей в сети распределения и сбыта как среднюю величину ожидаемого спроса, путем графической экстраполяции данных прошлого спроса, а страховой запас — как величину, пропорциональную типовому отклонению закона распределения спроса в заданном периоде, учитывающую имевшиеся тенденции колебаний спроса.
Компания установила в результате исследований, что распределение спроса в заданном интервале следует.
Эти закономерности облегчают расчет страхового запаса. По соответствующим этим законам формулам подсчитывается типовое отклонение, которое, будучи умноженным на коэффициент обслуживания, установленный руководством компании (уровень удовлетворения спроса), дает величину страхового запаса.
В долгосрочных прогнозах кроме параметров, характеризующих ожидаемый спрос и его распределение в интервалах между поставками, а также параметров, характеризующих отклонение интервалов поставок, учитываются изменения потребности в зависимости от срока службы машин, применяется корреляция объемов ожидаемого сбыта и планируемых к выпуску количеств новых машин и другие параметры.
Любой прогноз, полученный в результате применения математических методов при помощи компьютеров, требует обязательной корректировки с использованием данных, которые не могут быть учтены при базировании на величинах прошлого спроса и факторов, не поддающихся программированию. К таким данным относятся социальные и политические события, климатические и экономические условия рынка и т. п. Корректировку Прогнозов осуществляют специалисты по сбыту, знающие конъюнктуру рынка.